A Method for Finding Structured Sparse Solutions to Nonnegative Least Squares Problems with Applications
نویسندگان
چکیده
Unmixing problems in many areas such as hyperspectral imaging and differential optical absorption spectroscopy (DOAS) often require finding sparse nonnegative linear combinations of dictionary elements that match observed data. We show how aspects of these problems, such as misalignment of DOAS references and uncertainty in hyperspectral endmembers, can be modeled by expanding the dictionary with grouped elements and imposing a structured sparsity assumption that the combinations within each group should be sparse or even 1-sparse. If the dictionary is highly coherent, it is difficult to obtain good solutions using convex or greedy methods, such as nonnegative least squares (NNLS) or orthogonal matching pursuit. We use penalties related to the Hoyer measure, which is the ratio of the l1 and l2 norms, as sparsity penalties to be added to the objective in NNLS-type models. For solving the resulting nonconvex models, we propose a scaled gradient projection algorithm that requires solving a sequence of strongly convex quadratic programs. We discuss its close connections to convex splitting methods and difference of convex programming. We also present promising numerical results for DOAS analysis and hyperspectral unmixing problems.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملModulus-Type Inner Outer Iteration Methods for Nonnegative Constrained Least Squares Problems
For the solution of large sparse nonnegative constrained least squares (NNLS) problems, a new iterative method is proposed which uses the CGLS method for the inner iterations and the modulus iterative method for the outer iterations to solve the linear complementarity problem resulting from the Karush-Kuhn-Tucker condition of the NNLS problem. Theoretical convergence analysis including the opti...
متن کاملA Dual Active-set Quadratic Programming Method for Finding Sparse Least-squares Solutions
Many imaging and compressed sensing applications seek sparse solutions to large under-determined least-squares problems. The basis pursuit (BP) approach minimizes the 1-norm of the solution, and the BP denoising (BPDN) approach balances it against the least-squares fit. The duals of these problems are conventional linear and quadratic programs. We introduce a modified parameterization of the BP...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 6 شماره
صفحات -
تاریخ انتشار 2013